204 research outputs found

    Follicular lymphoma, a B cell malignancy addicted to epigenetic mutations

    Get PDF
    K Korfi, S Ali, J Heward and J Fitzgibbon are supported by Cancer Research UK Programme Grant [C15966/A15968] and Bloodwise Programme Grant [15002]. S Ali is also a recipient of Cancer Research UK Clinical Careers Committee research bursary [C56515/A21397]

    Analysis of RNA Binding by the Dengue Virus NS5 RNA Capping Enzyme

    Get PDF
    Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5β€² end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the KD for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5β€² phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5β€² di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented

    The Core Protein of Classical Swine Fever Virus Is Dispensable for Virus Propagation In Vitro

    Get PDF
    Core protein of Flaviviridae is regarded as essential factor for nucleocapsid formation. Yet, core protein is not encoded by all isolates (GBV- A and GBV- C). Pestiviruses are a genus within the family Flaviviridae that affect cloven-hoofed animals, causing economically important diseases like classical swine fever (CSF) and bovine viral diarrhea (BVD). Recent findings describe the ability of NS3 of classical swine fever virus (CSFV) to compensate for disabling size increase of core protein (Riedel et al., 2010). NS3 is a nonstructural protein possessing protease, helicase and NTPase activity and a key player in virus replication. A role of NS3 in particle morphogenesis has also been described for other members of the Flaviviridae (Patkar et al., 2008; Ma et al., 2008). These findings raise questions about the necessity and function of core protein and the role of NS3 in particle assembly. A reverse genetic system for CSFV was employed to generate poorly growing CSFVs by modification of the core gene. After passaging, rescued viruses had acquired single amino acid substitutions (SAAS) within NS3 helicase subdomain 3. Upon introduction of these SAAS in a nonviable CSFV with deletion of almost the entire core gene (Vp447Ξ”c), virus could be rescued. Further characterization of this virus with regard to its physical properties, morphology and behavior in cell culture did not reveal major differences between wildtype (Vp447) and Vp447Ξ”c. Upon infection of the natural host, Vp447Ξ”c was attenuated. Hence we conclude that core protein is not essential for particle assembly of a core-encoding member of the Flaviviridae, but important for its virulence. This raises questions about capsid structure and necessity, the role of NS3 in particle assembly and the function of core protein in general

    Novel ATP-Independent RNA Annealing Activity of the Dengue Virus NS3 Helicase

    Get PDF
    The flavivirus nonstructural protein 3 (NS3) bears multiple enzymatic activities and represents an attractive target for antiviral intervention. NS3 contains the viral serine protease at the N-terminus and ATPase, RTPase, and helicase activities at the C-terminus. These activities are essential for viral replication; however, the biological role of RNA remodeling by NS3 helicase during the viral life cycle is still unclear. Secondary and tertiary RNA structures present in the viral genome are crucial for viral replication. Here, we used the NS3 protein from dengue virus to investigate functions of NS3 associated to changes in RNA structures. Using different NS3 variants, we characterized a domain spanning residues 171 to 618 that displays ATPase and RNA unwinding activities similar to those observed for the full-length protein. Interestingly, we found that, besides the RNA unwinding activity, dengue virus NS3 greatly accelerates annealing of complementary RNA strands with viral or non-viral sequences. This new activity was found to be ATP-independent. It was determined that a mutated NS3 lacking ATPase activity retained full-RNA annealing activity. Using an ATP regeneration system and different ATP concentrations, we observed that NS3 establishes an ATP-dependent steady state between RNA unwinding and annealing, allowing modulation of the two opposing activities of this enzyme through ATP concentration. In addition, we observed that NS3 enhanced RNA-RNA interactions between molecules representing the ends of the viral genome that are known to be necessary for viral RNA synthesis. We propose that, according to the ATP availability, NS3 could function regulating the folding or unfolding of viral RNA structures

    Histone Deacetylase Inhibitors Downregulate Checkpoint Kinase 1 Expression to Induce Cell Death in Non-Small Cell Lung Cancer Cells

    Get PDF
    Background: Histone deacetylase inhibitors (HDACis) are promising anticancer drugs; however, the molecular mechanisms leading to HDACi-induced cell death have not been well understood and no clear mechanism of resistance has been elucidated to explain limited efficacy of HDACis in clinical trials. Methods and Findings: Here, we show that protein levels of checkpoint kinase 1 (Chk1), which has a major role in G2 cell cycle checkpoint regulation, was markedly reduced at the protein and transcriptional levels in lung cancer cells treated with pan-and selective HDACis LBH589, scriptaid, valproic acid, apicidin, and MS-275. In HDACi treated cells Chk1 function was impaired as determined by decreased inhibitory phosphorylation of cdc25c and its downstream target cdc2 and increased expression of cdc25A and phosphorylated histone H3, a marker of mitotic entry. In time course experiments, Chk1 downregulation occurred after HDACi treatment, preceding apoptosis. Ectopic expression of Chk1 overcame HDACiinduced cell death, and pretreating cells with the cdc2 inhibitor purvalanol A blocked entry into mitosis and prevented cell death by HDACis. Finally, pharmacological inhibition of Chk1 showed strong synergistic effect with LBH589 in lung cancer cells. Conclusions: These results define a pathway through which Chk1 inhibition can mediate HDACi-induced mitotic entry and cell death and suggest that Chk1 could be an early pharmacodynamic marker to assess HDACi efficacy in clinical samples

    An efficient preparation of 1,2-dihydropyridazines through a Diels-Alder/palladium-catalysed elimination sequence

    Get PDF
    Β© 2019 Elsevier Ltd A convenient, scalable synthesis of 1,2-dihydropyridazines is presented, based on the Diels-Alder cycloaddition of 1-acetoxy-1,3-butadiene with a variety of azo compounds, followed by a palladium-catalysed elimination. The products are produced on multigram scale and the new method is particularly efficient and atom-economical when compared with previous preparations of 1,2-dihydropyridazines
    • …
    corecore